
1

0

Preface

Chris Hundhausen

The ascension of the Internet as an essential medium of commerce, social interaction and

computation has ushered in the modern era of computational connectivity. Through a

broad range of computing devices—including, most prominently, mobile devices—

humans are increasingly accessing software applications that support all manner of

human activity, ranging from work, to play, to social interaction. And when they do, the

applications they are using are most often running in a web browser.

Accordingly, web development has become one of the most relevant and highly

sought after skills in the software industry today. Given the rapidly growing demand,

software companies are struggling find enough developers to fill web development

positions, which require at least some of the following skills:

1. Front-end development, which focuses on developing the client-side user

interfaces to web applications.

2. Back-end development, which focuses on developing the web application

programming interfaces (APIs) through which front-end applications persistently

store, access, and manipulate data.

3. User interface design (also called UX or “user experience” design), which focuses

on making web applications that are easy to learn, easy to use, and address user

needs.

2

4. DevOps engineering, which focuses on implementing the pipelines and scripts for

deploying and maintaining, securing, and fine-tuning the performance of web

applications.

While full-stack web development encompasses all these skills, the first two—front-

and back-end development—figure most prominently in the construction of functional

web applications. While this book focuses most intently on those skills, it also

emphasizes a core aspect of the third skill: web accessibility. Indeed, given the U.S. legal

requirement [1], and the ethical imperative, for web applications to be accessible by

people who use assistive technologies, facilitating accessibility is foundational to web

development. DevOps, the fourth of the above quartet of skills, is the least emphasized in

this book, receiving some coverage in two of the book’s later chapters.

Audience

This book is written for intermediate to advanced undergraduate students who

have taken at least an introductory sequence in software development fundamentals. As

such, the book assumes an audience that is both comfortable with structured

programming in at least one language, and that is capable of rapidly migrating to the

JavaScript language even if they have not studied it previously. While the book does

discuss the most important syntactic features of the JavaScript language, the book’s focus

is decidedly not on teaching JavaScript, but rather on applying JavaScript, along with its

siblings, HTML and CSS, to the practice of web development. Students who find

themselves struggling with JavaScript as they work through this book should avail

themselves of the numerous online tutorials and references on the language. Great

3

starting places include the W3 Schools JavaScript Tutorial [2], The Modern JavaScript

Tutorial [3], and the Mozilla Developer Network’s comprehensive reference materials

[4].

Technologies

When I began this textbook in 2019, I was under the illusion that it might be possible to

write a web development textbook focused on the latest technology versions. I was

quickly disabused of this notion when, having drafted initial versions of several of the

book’s chapters, I discovered that the React framework was changing course: class

components were being abandoned in favor of functional components [5]. No problem, I

reasoned: I can just rewrite that part of the book. Some five years later, three book drafts

later, and multiple versions of the web technologies used in this book later—not to

mention the rise of generative AI programming assistants!—I have thankfully given up

on keeping up with the latest technologies. The book is grounded in principles and

practices of web development that should withstand the test of time, even if the versions

of the technologies used to teach web development in the book will not. With that caveat

in mind, let’s take a look at the modern (for now) web technologies used in this book.

JavaScript

As the language of the web, JavaScript has become the most popular

programming language in use today, with some 62 percent of developers using it [6].

With a storied history that dates to its initial release in 1995, the language continues to

evolve, with major updates occurring in 2009 and 2015 and new versions being released

annually starting in 2016. As of this writing, the latest release is ES15, also known as

https://www.w3schools.com/js/DEFAULT.asp
https://javascript.info/
https://javascript.info/
https://developer.mozilla.org/en-US/docs/Web/JavaScript

4

ECMAScript 2024 [7]. Since the release of ES6 JavaScript in 2015—the start of

JavaScript’s modern era—the core of the language has remained relatively stable. This

book adopts post-ES6 JavaScript, including let statements, constants, arrow functions,

spread syntax, classes, modules (with import syntax), and async/await syntax for

asynchronous operations, while steering clear of esoteric or experimental language

features.

On the topic of JavaScript, I would be remiss not to acknowledge the rapid rise of

TypeScript [8] as a modern superset of JavaScript widely beloved for its type system and

enhanced tooling. If I had begun work on this textbook just a year or two later, I may well

have embraced TypeScript as the language of the book. Despite TypeScript’s growing

popularity, modern JavaScript remains the dominant language for web development.

Moreover, students who learn web development in modern JavaScript should have a solid

foundation for transitioning to TypeScript if and when the situation calls for it.

The MERN Stack

According to the most recent Stack Overflow Developer Survey available at the time of

this writing [6], the two most popular web development frameworks and technologies are

Node.js and React.js, which are used by some 40% of software developers. The fifth most

popular web technology is Express.js; 18% of developers use it. The fifth most popular

database platform is MongoDB, with 25% of developers using it.

These four popular web development technologies form the MERN (MongoDB,

Express.js, React.js, and Node.js) technology stack for web development. It is arguably the

most popular web development stack in use at the time of this writing, making it a logical

choice for a textbook on full stack web development. There is also a good pedagogical

https://262.ecma-international.org/
https://www.typescriptlang.org/

5

reason to adopt the MERN stack to teach and learn web development: Unlike some other

tech stacks that use different languages for front-end and back-end development, the

MERN stack uses one language—JavaScript—for all web development. This means that

students do not need to switch between programming languages when moving from front-

end to back-end development, reducing cognitive load and facilitating a sharper focus on

the web development tasks at hand.

Git and GitHub

Modern web development is most often done in a team environment with a shared code

base. Accordingly, this textbook relies extensively on a version control system (Git) and a

cloud repository hosting system (GitHub) to teach web development. The book assumes

that students have basic Git and GitHub skills, including the ability to create and clone a

repository; create and switch branches; commit code; and push and pull from a remote. If

students do not already have these skills, course instructors should consider adding a

supplementary unit on Git/GitHub at the start of the course, or referring students to one of

the many wonderful Git/GitHub tutorials on the internet (see, e.g., [9], [10]).

Courses

 This book is suitable for a variety of intermediate to advanced web development

courses in undergraduate computer science, software engineering, information science,

information technology, and related degree programs (henceforth referred to collectively

as “computing degree programs”). When considering whether this course is suitable for

adoption in a web development course, the key question to ask is this: Does the course

require, as a prerequisite, an introductory sequence in software development

6

fundamentals? Adopting the Association for Computing Machinery’s terminology,

computing educators often call the courses in this sequence CS 1 (“Introduction to

Programming”), CS 2 (“Intermediate Programming”), and CS 3 (“Data Structures and

Algorithms”) If this course sequence or a similar one is a prerequisite, then some

pathway through this book should be a good fit for the course.

Pathways through the Book

Table 1 presents pathways through this book for four common types of web development

courses offered in computing degree programs:

• Front End (FE)—A 200 or 300-level course focused on front-end web

development.

• Full Stack (FS)—A 300 or 400-level course focused on full-stack web

development.

• Front End–Advanced Elective (FE-AE)—An advanced elective (400-level)

course focused on front-end development.

• Back End–Advanced Elective (BE–AE)—An advanced elective (400-level)

course focused on back-end development.

 Web Development Course
Book Section FE FS FE-AE BE–AE
Chapter 1. Welcome to Full Stack Web Development
Part I: Front End Development in HTML, CSS, and JavaScript
Chapters 2–11

 ◓

Part II: Front End Development in React
Chapters 12-16

◓ ◓

Part III: Back-End Development with Node, Express, and MongoDB
Chapters 17-24

 ◓

Team Web Development Project (Appendix A and B)
Table 1. Pathways through the book for four different web development courses: FE = 200 or 300-level Front-End
Course, FS = 300 or 400-level Full Stack Course, FE-AE = Advanced elective (400-level) course on front-end
development, usually part of a two-course sequence;, BE-AE = Advanced elective (400-level) course covering back-
end development, usually part of a two-course sequence. = Cover chapters in full, ◓ = Cover chapters selectively
based on course constraints

7

FE: 200- or 300-level Course on Front-End Development

Some computing degree programs offer a web development course at the 200- or

300-level, emphasizing web development as a core programming skill. Early web

development courses tend to focus on using HTML, CSS, and JavaScript to build front-

end web applications, although some coverage of front-end JavaScript programming

frameworks and back-end programming may be present. For instance, at my current

institution (Oregon State University), CS 290 (“Web Development”) is a required course

for several degree pathways and focuses most heavily on front-end development. An

early course emphasizing front-end development could start with the general introduction

to full stack web development in Chapter 1, and then move through the 10 chapters in

Part I of the book (“Front End Development in HTML, CSS, and JavaScript”) at the pace

of one to two chapters per week. If the course wanted to provide coverage of a front-end

JavaScript framework, it could also work through some or all of the five chapters in Part

II of the book (“Front-End Development in React”). An appropriate culmination to such a

course would be an individual or team web development project, as described in

Appendix B.

300- or 400-level Course on Full-Stack Web Development

In lieu of, or in addition to, an early course in web development, many computing

degree programs offer one or more advanced electives in web development for students

in the third or fourth year of the program. One approach is a single advanced (300- or

400-level) course on full-stack web development. When I was on the faculty at

Washington State University, I taught CS 489 (“Web Development”), which covers

front-end and back-end development in a semester-long course. This was the course for

8

which I wrote early drafts of this textbook, and for which this textbook is ideally suited.

In the first week, the course could begin with the general introduction to full stack web

development in Chapter 1. In the remainder of the semester, the course could divide its

time roughly equally between front- and back-end development before launching a team

web development project. A plausible schedule might look like this:

• Week 1: Introduction to full-stack web development (Chapter 1).

• Weeks 2 through 8: Cover selected chapters of Part I (“Front End Development

in HTML, CSS, and JavaScript”) and Part II (“Front-End Development in

React”). There are 15 chapters in these two parts, so a pace of one to two chapters

per week would be reasonable.

• Weeks 9 through 13: Cover selected chapters of Part III (“Back-End

Development with Node, Express, and MongoDB”). At a pace of one to two

chapters per week, a course could cover all eight chapters in this part within five

weeks.

• Weeks 14 through 15: Students work on final team web development project

using agile development process with two one-week sprints. Appendix A presents

a primer on team agile practices for web development, while Appendix B presents

detailed instructions for running and evaluating a web development project

associated with the SpeedScore code base.

Advanced Electives on Front-End and Back-End Web Development

Some computing degree programs offer two advanced electives (usually 400-level

courses) on web development: one focused on front-end development, and a second

focused on back-end development. For example, at my current institution, Oregon State

9

University, we offer CS 493 (“Cloud Application Development”) and CS 494

(“Advanced Web Development”) as 10-week courses (we are on the quarter system).

While some institutions may require courses like these to be taken in a certain order—

typically, the front-end course comes before the back-end course—the courses at Oregon

State University can be taken in any order.

This book has a unique pedagogical feature that supports independent front-end

and back-end web development courses like the ones at Oregon State University. Part III

of the book, which focuses on back-end development, is quasi-independent from Parts I

and II, which focus on front-end development. While the entire book focuses on

developing the same full-stack web application, the book’s coverage of front-end

development relies exclusively on a front-end mechanism—local storage—to store

application data persistently. Thus, Chapters 2 through 16 never refer to or depend on a

back-end web application. This means that, after an introduction to full stack web

development and a brief orientation to the web application that serves as the unifying

focus of the book (Chapter 1), students could begin their study of back-end web

development with Part III (Chapters 17–24). In fact, Chapter 17’s treatment of computer

networking concepts for the web, including HTTP and TCP/IP, provides an appropriate

introduction to server-side programming, laying a foundation for a course focused on

back-end web development.

Pedagogical Perspectives

This textbook is entitled Full Stack Web Programming from the Ground Up for a reason:

It starts with the lowest-level building blocks of web programming, and then moves to

10

higher-level frameworks. For front-end web programming, this means presenting detailed

coverage of the fundamental building blocks of front-end web development—HTML,

CSS, and JavaScript—and then shifting to React, a higher-level JavaScript framework.

For back-end web programming, this means introducing the Node.js execution

environment prior to delving into Express.js, a popular back-end web application

framework built on top of Node.js.

Observe that this perspective differs from the one commonly taken by web

development bootcamps and online courses, which tend to teach high-level front-end

frameworks (e.g., React, Vue, Angular) and back-end frameworks (Express, Flask, Ruby)

right out of the gate, in the interest of getting students rapidly up to speed with web

development. The pedagogical perspective underlying this book is that, if students learn

the low-level building blocks of web development first, they are in a better position to

learn the higher-level frameworks on which they are built. The approach dictated by this

perspective requires more time and effort, as students first learn lower-level constructs

(HTML, CSS, JavaScript, Node) that will ultimately be replaced by higher-level

abstractions such as components and JSX (in front-end React) and routes, controllers, and

services (in back-end Express). However, the extra time and effort are deemed to be

worth it, since an understanding of the underlying building blocks, and of how higher-

level frameworks build on them, should lead to more resilient and robust web

development skills.

Another key pedagogical perspective embodied by this book is that a productive

and engaging way to learn web programming is to build an authentic web application

from the ground up. In the first chapter, the book introduces SpeedScore, a full-stack web

11

application for speedgolf [11]. Under continuous development since 2017, most recently

by a team of undergraduate and graduate students at Oregon State University as part of its

Vertically Integrated Projects Program [12], the production version of the application (see

https://speedscore.org) is hundreds of thousands of lines of source code, has gone through

multiple versions, and is used by a vibrant international community of speedgolfers. The

hope is that, by engaging in the development of a real full-stack application that is used

by an international audience, readers will gain the sense that they are learning relevant

skills that can make a difference.

A third perspective, closely related to the previous one, is that it is imperative for

students to learn how to contribute to legacy code bases, rather than always writing their

own code from scratch. This perspective has been heavily influenced by my involvement

in a multi-year computing education research project [13] funded by the U.S. National

Science Foundation’s Improving Undergraduate STEM Education (IUSE) Program [14].

The project focuses on developing and evaluating novel pedagogical approaches in which

students learn software engineering by engaging in so-called brownfield software

development projects, in which they collaborate on a team to contribute to a legacy code

base written by others. This type of development more closely aligns with what students

will ultimately encounter in the software industry, where they will join teams that grow

and maintain legacy code bases. This book emphasizes brownfield development by

requiring students to build on, and test, the SpeedScore code base developed in the book,

rather than create new web applications from scratch.

https://www.playspeedgolf.com/
https://engineering.oregonstate.edu/EECS/vip
https://speedscore.org/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1915196
https://new.nsf.gov/funding/opportunities/iuse-edu-improving-undergraduate-stem-education-directorate-stem

12

Pedagogical Features

We now consider the key pedagogical features of the book, some of which follow from

the pedagogical perspectives described in the previous section.

Code Listings

Perhaps the most prominent pedagogical feature of the book is its numerous code listings,

which present key segments of solutions that address the development problems explored

in the book’s chapters. Indeed, much of the book is dedicated to motivating, developing,

and explaining these listings, which ground the book firmly in concrete code solutions

that address key web development problems.

SpeedScore Code Repository with Tags

The book develops a scaled down, pedagogical version of the SpeedScore

application from start to finish, with each chapter using the application as a backdrop

against which to motivate, contextualize and explore a different aspect of web

development. In each chapter, the book carefully walks the reader through the

development of key components of the application, step-by-step, and reasons through the

associated design and implementation considerations and tradeoffs.

To further ground its explorations of web development, the book includes a

companion GitHub code repository whose history documents the progressive

development of the book’s code. The code developed in each book chapter is captured in

a separate branch of the repository (e.g., ch3, ch4, ch5). Moreover, strategically-labeled Git

tags [15] reference the key code blocks developed within each chapter. Tag markers

appearing in the text (e.g., ch5s1 for the first snapshot of Chapter 5) allow readers to

https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://git-scm.com/book/en/v2/Git-Basics-Tagging

13

access the code that was just developed. Thus, the book’s source code repository plays a

valuable role in supporting exploratory learning, enabling users to view, execute and test

the code developed in the book.

Flow Diagrams

In Part III of the book, where server-side APIs are developed to address the needs of a

client-side application, understanding the complex interactions between the client and

server is essential. Annotated flowcharts that graphically present these interactions

feature prominently in this part of the book, providing valuable visual aids for explaining

how various API routes work.

Boxes

Many of the chapters feature boxes—side discussions of key technologies,

considerations, and tradeoffs related to the chapter content. While boxes are generally not

required reading, they add perspective and invite the reader to contemplate the use of

practices and technologies that can enhance web development.

Exercises

End-of-chapter exercises provide opportunities for readers to check their understanding

of the concepts, solutions, and design and implementation decisions presented in the

chapter. They also invite readers to perform additional research related to the chapter

content.

Programming Tasks

End-of-chapter programming tasks invite readers to expand upon the code developed in

the chapter. This might entail implementing important functionality that the chapter chose

14

not to implement; writing test suites to evaluate code developed within the chapter; or

using alternative technologies, libraries, or approaches to implement functionality

implemented within the chapter. In all cases, the tasks are brownfield in the sense that

they must build on the existing SpeedScore code in the chapter’s repository branch.

Quasi-Independence of Front-End and Back-End Parts of the Book

As mentioned earlier, a unique pedagogical feature of the book is that the front-end code

developed in Parts I and II of the book does not rely on the back-end server application

(API) constructed in Part III of the book. This is because the client SpeedScore

application relies exclusively on client-side local storage for persistent data storage. Only

in the book’s final chapter (Chapter 24) are the front-end and back-end applications

stitched together into a full-stack application. The practical implication of this

pedagogical feature is that it allows front-end and back-end web development to be

taught independently of each other, and in any order.

Team Web Development Project

Given that when students become professional web developers, they will most often join

software teams that are working on legacy code bases, it makes sense to engage students

in team web development projects as a culminating experience in web development

courses that adopt this textbook. To support such projects, Appendix A presents best

practices for engaging student teams in agile web development practices, while Appendix

B presents a prompt, set of issues, starting codebase and assessment rubrics for team web

development project in which students add features to the SpeedScore application

developed in this book.

15

Articulation with ABET Learning Outcomes

Many computing degree programs seek accreditation from ABET [16], perhaps the most

widely known and respected accreditation board for STEM disciplines. To obtain ABET

accreditation, a degree program must demonstrate that students in the program attain the

ABET-mandated student learning outcomes (SLOs). Table 2 presents the five ABET

SLOs for computing degree programs [17], along with sample performance indicators

that could be used to gauge attainment of those outcomes in a web development course

that adopts this book. The book’s emphasis of seven core web development principles

provides a robust framework for principles-based assessment of SLO 1. An assessment

of SLO 2 can be split across client-side and server-side implementation concerns. While

the remaining three SLOs may not traditionally be assessed in a web development course,

Table 2 illustrates possible avenues for assessment that leverage web development

activities, concerns, and a team project involving web development.

ABET Student Learning Outcome Sample Performance Indicators
1. Analyze a complex computing

problem and apply principles of
computing and other relevant
disciplines to identify solutions.

a. Responsiveness: Tailor a web application’s user interface to
a variety of different display sizes

b. Accessibility: Use semantic HTML, the Web Content
Accessibility Guidelines to construct we applications that
are accessible to people who use access them through
assistive technologies

c. Usability: Apply user interface design principles to
construct web applications that are easy to learn and
efficient to use.

d. Usefulness: Construct web applications that support
functionalities that provide value to their users

e. Correctness: Construct test cases to ensure that a web
application’s behavior meets requirements.

f. Robustness: Apply input constraints and error checking to
prevent unexpected, uncommon or incorrect user behaviors
from crashing a web application

g. Security: Use anti-CSRF tokens and http-only cookies to
reduce possibility of successful XSS and CSRF attacks
against a web application

https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2023-2024/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2023-2024/#GC3
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2023-2024/#GC3

16

2. Design, implement, and evaluate a
computing-based solution to meet a
given set of computing
requirements in the context of the
program’s discipline.

a. Client-side development: Use React to construct a client-
side web application that supports creating, modifying, and
deleting user data stored in local storage

b. Server-side development: Use Express.js and MongoDB to
construct a REST API to support CRUD operations on a
web application’s user data

3. Communicate effectively in a
variety of professional contexts.

a. Documentation: Clearly document a module or function
within a web application’s source code using best practices

4. Recognize professional
responsibilities and make informed
judgments in computing practice
based on legal and ethical
principles.

a. Accessibility: Assess the extent to which a web application
is universally accessible to people who use assistive
technologies

b. Security: Implement appropriate security measures to
safeguard web application accounts and data.

5. Function effectively as a member
or leader of a team engaged in
activities appropriate to the
program’s discipline

a. Fulfill assigned responsibilities in a team web development
project

b. Describe ways a team might improve its collaborative
practices

c. Assist team members who ask for help
Table 2. Sample performance indicators for gauging student attainment of ABET Student Learning Outcomes in a web

development course that adopts this textbook

Articulation with CS2023

The latest ACM/IEEE-CS/AAAI Computer Science Curricula (CS2023) [18] classify

web development as a form of specialized platform development (SPD)—a subarea of the

Application Development knowledge area. Table 3 presents the core and non-core

knowledge areas (KAs) that make up the SPD-Web subarea, along with the book topics

and chapters that address those KAs. As the table indicates, all but one KA (3. Software

as a Service) are addressed by the book. Conversely, several broad topics not identified

by the CS2023 as SPD-Web KAs are addressed by the book:

• Automated testing of front-end web applications (Ch. 7)

• Using Web APIs (Ch. 14)

• Networking concepts and protocols for web development (Ch. 17)

• Automated testing of APIs (Ch. 23)

• Documenting APIs (Ch. 23)

17

Knowledge Area
(C = Core, N = Non-Core)

Relevant Book Topics/Chapters

1. Web programming languages (C) • Overview: Ch. 1
• HTML, CSS, JavaScript: Ch. 2–11

2. Web platforms, frameworks, or meta-
frameworks (C)

• Client-side development frameworks: Ch. 12–16
• Server-side development frameworks: Ch. 18

3. Software as a Service (SaaS) (C) • Not covered
4. Web standards (C) • Accessibility: Ch. 3–11
5. Security and Privacy Considerations (C) • Client data sanitization: Ch. 8

• Authentication: Ch. 21
• API Security: Ch.22

6. Analyzing requirements for web applications
(N)

• Front-end app requirements: Ch. 14
• Back-end app requirements: Ch. 18

7. Computing services (N) • Hosting solutions for client apps: Ch. 17
• Hosting solutions for server apps: Ch. 24

8. Data management (N) • Accessing app data: Ch. 18
9. Architecture (N) • Architecting client-side applications: Ch. 3, 4,

15, 16
• API Architectural Frameworks: Ch. 20

10. Storage solutions (N) • Local Storage: Ch. 10
• SQL and No-SQL Databases: Ch. 19

Table 3. Book topics and chapters that address the core (C) and non-core (N) CS2023 Knowledge Areas (KAs) for
SPD-Web subarea

Acknowledgements

Bringing this book to the finish line has proved to be a far greater challenge than I

could have ever imagined. That I was able to finally finish the first edition of the book in

2024, over five years after I drafted the first chapters of the book, is nothing short of

astonishing, not only because I was able to persevere through multiple drafts and rewrites

as the web technology rapidly evolved, but also because my editors, Naomi Robertson

and Steve Merken of Elsevier, failed to give up on me after multiple missed deadlines.

 On the over five-year journey that has culminated in the publication of the book, I

have many people to be grateful for. This journey all started when Washington State

University (WSU) agreed to support my odd request for a sabbatical focused on

developing a full-stack web application for the esoteric sport of speedgolf and traveling

to national and international speedgolf tournaments to facilitate, and collect data on, the

18

use of the application to support the live-scoring of those tournaments. That sabbatical,

which took place in the academic year 2017-18, kindled my passion for web development

and planted the seeds for this book. Early drafts of some chapters of this book were used

and reworked in the context of teaching CS 489 (“Web Development”) at WSU from

2018 through 2021.

I am grateful to Stephen Merken, production editor at Elsevier, who responded

enthusiastically to my initial book proposal and agreed to support it. He assigned the

project to Naomi Robertson, whose encouragement and unflinchingly positive attitude

throughout this process have had a profoundly positive impact. As the book began to

consume more years of my life, I thought many times of giving up, but Naomi kept

rooting for me to finish it.

I am grateful to three colleagues who contributed to the writing of this book.

Thanks go to Craig Miller, a prominent computing education researcher and advocate for

web development education, for writing the book’s foreword; to my long-time colleague

and friend Phillip Conrad, with whom I have passionately pursued research into software

engineering education for over a decade, for contributing the appendix on best practices

for team web development projects rooted in agile methods; to Rishabh Srivastava, a

former graduate student of mine, for adapting a piece of his M.S. project for the appendix

on deploying a client-side web application to alternative hosting platforms; and to XXX,

a current/former undergraduate/graduate student of mine, for contributing solutions to the

end-of-chapter exercises and programming tasks.

The book’s pedagogic approach of engaging students in brownfield web

development, in which they develop features for the legacy SpeedScore code base rather

19

than writing web applications from scratch, stems from my work on the National Science

Foundation-funded research project entitled “Exploring Brownfield Programming

Assignments in Undergraduate Computing Education.” [13]. Thus, this book has been

supported by the National Science Foundation under grant number 1915196.

In the countless hours I spent researching modern web development, writing the

SpeedScore source code, and writing the book, I became a cave dweller in front of the

triple monitors in my home office, sacrificing many weekends and recreational

opportunities with my family. Nonetheless, my daughter Lily and my partner Angela

remained supportive, allowing me to present show-and-tell sessions about book sections

or SpeedScore code I had developed, and listening to my venting about how daunting the

project had become. They gave me the space to reflect and the strength to keep going.

My mom, Patricia Hundhausen, and dad, David Hundhausen, were both alive

when I floated the idea to write this book. Both were proud and supportive of their son’s

new textbook venture and encouraged me to pursue it. Sadly, I lost both of my parents

before this book could be completed. I have fond memories of giving my dad weekly

updates about this book on my drives back from speedgolf rounds. He would always ask

how things were going and urge me to keep at it. His belief in me motivated me not to

give up, even when it seemed I would never finish.

References Cited

[1] “Fact Sheet: New Rule on the Accessibility of Web Content and Mobile Apps
Provided by State and Local Governments,” ADA.gov. Accessed: Dec. 12, 2024.
[Online]. Available: https://www.ada.gov/resources/2024-03-08-web-rule/

[2] “JavaScript Tutorial,” w3schools. Accessed: Feb. 11, 2022. [Online]. Available:
https://www.w3schools.com/js/

20

[3] “The Modern JavaScript Tutorial.” Accessed: Dec. 13, 2024. [Online]. Available:
https://javascript.info/

[4] moz://a, “typeof - JavaScript | MDN,” MDN Web Docs. Accessed: Jul. 13, 2021.
[Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/typeof

[5] “Introducing Hooks,” React. Accessed: Nov. 12, 2022. [Online]. Available:
https://reactjs.org/docs/hooks-intro.html

[6] “2024 Stack Overflow Developer Survey,” Stack Overflow. Accessed: Dec. 13,
2024. [Online]. Available: https://survey.stackoverflow.co/2024/

[7] “ECMAScript® 2024 Language Specification.” Accessed: Dec. 14, 2024.
[Online]. Available: https://262.ecma-international.org/

[8] “JavaScript With Syntax For Types.,” typescriptlang.org. Accessed: Feb. 11, 2022.
[Online]. Available: https://www.typescriptlang.org/

[9] “Git Tutorial.” Accessed: Dec. 14, 2024. [Online]. Available:
https://www.w3schools.com/git/default.asp

[10] “Git and GitHub Tutorial – Version Control for Beginners,” freeCodeCamp.org.
Accessed: Dec. 14, 2024. [Online]. Available:
https://www.freecodecamp.org/news/git-and-github-for-beginners/

[11] “PlaySpeedgolf.com. It’s game time!,” PlaySpeedgolf.com. It’s game time!
Accessed: Dec. 14, 2024. [Online]. Available: https://www.playspeedgolf.com/

[12] “Vertically Integrated Projects | Electrical Engineering and Computer Science |
College of Engineering | Oregon State University,” Oregon State University:
School of Electrical Engineering and Computer Science. Accessed: Dec. 14, 2024.
[Online]. Available: https://engineering.oregonstate.edu/EECS/vip

[13] C. D. Hundhausen and O. Adesope, “Collaborative Research: Exploring
Brownfield Programming Assignments in Undergraduate Computing Education,”
U.S. National Science Foundation. Accessed: Dec. 15, 2024. [Online]. Available:
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1915196

[14] “Improving Undergraduate STEM Education: Directorate for STEM Education
(IUSE: EDU) | NSF - National Science Foundation.” Accessed: Dec. 15, 2024.
[Online]. Available: https://new.nsf.gov/funding/opportunities/iuse-edu-
improving-undergraduate-stem-education-directorate-stem

[15] S. Chacon and B. Straub, “Git Basics - Tagging,” in Pro Git, Apress, 2014, pp. 55–
60. Accessed: Dec. 15, 2024. [Online]. Available: https://git-
scm.com/book/en/v2/Git-Basics-Tagging

[16] “Home,” ABET. Accessed: Dec. 15, 2024. [Online]. Available:
https://www.abet.org/

[17] “Criteria for Accrediting Computing Programs, 2023 - 2024,” ABET. Accessed:
Dec. 15, 2024. [Online]. Available:
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-
computing-programs-2023-2024/

[18] A. N. Kumar et al., Computer Science Curricula 2023. New York, NY, USA:
Association for Computing Machinery, 2024.

	0
	Audience
	Technologies
	JavaScript
	The MERN Stack
	Git and GitHub

	Courses
	Pathways through the Book
	FE: 200- or 300-level Course on Front-End Development
	300- or 400-level Course on Full-Stack Web Development
	Advanced Electives on Front-End and Back-End Web Development

	Pedagogical Perspectives
	Pedagogical Features
	Code Listings
	SpeedScore Code Repository with Tags
	Flow Diagrams
	Boxes
	Exercises
	Programming Tasks
	Quasi-Independence of Front-End and Back-End Parts of the Book
	Team Web Development Project

	Articulation with ABET Learning Outcomes
	Articulation with CS2023

	Acknowledgements
	References Cited

